\qquad
\qquad
In This Test:

1) Unless otherwise specified, the domain of a function \boldsymbol{f} is assumed to be the set of all real numbers \boldsymbol{x} for which $f(x)$ is a real number.
2) The exact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices, the number that best approximates the exact numerical value.
26. If f is a function such that $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0$, which of the following must be true?
a. $\lim _{x \rightarrow a} f(x)$ does not exist
b. $f(a)$ does not exist
c. $f^{\prime}(a)=0$
d. $f(a)=0$
e. $f(x)$ is continuous at $x=0$
27. If $f(x)=\sqrt{\left(x^{2}+2\right)^{3}}, \quad f^{\prime}(x)=$
a. $\frac{3 \sqrt{x^{2}+2}}{2}$
b. $3 x \sqrt{x^{2}+2}$
c. $\sqrt{6 x\left(x^{2}+2\right)^{2}}$
d. $\frac{3 x}{\sqrt{x^{2}+2}}$
e. $\frac{4 x}{3 \sqrt[3]{x^{2}+2}}$
28. Of the choices given, which value is NOT in the domain of the function $f(x)=(\cos x)^{x}$?
a. 1
b. $\frac{\pi}{2}$
c. $\frac{4 \pi}{3}$
d. 4
e. 2π
29. If f is a function, which is everywhere increasing and concave upwards, which statement is true about f^{-1}, the inverse of f ?
a. f^{-1} is not a function.
b. f^{-1} is increasing and concave upwards.
c. f^{-1} is increasing and concave downwards.
d. f^{-1} is decreasing and concave upwards.
e. f^{-1} is decreasing and concave downwards.
30. A function whose derivative is a constant multiple of itself must be:
a. periodic
b. linear
c. exponential
d. quadratic
e. logarithmic
31. For how many real numbers x is it true that $\sin x=\frac{x}{10} ?$
a. 3
b. 5
c. 6
d. 7
e. Infinitely many
32. What is the $50^{\text {th }}$ derivative of $\cos x$?
a. $-\cos x$
b. $\cos x$
c. $\sin x$
d. $-\sin x$
e. 0
33. The derivative of f is given by $f^{\prime}(x)=e^{x}\left(-x^{3}+3 x\right)-3$ for $0 \leq x \leq 5$. At what value of x is $f(x)$ a minimum?
a. For no value of x
b. 0
c. 0.653
d. 1.604
e. 5
34. In the interval $0 \leq x \leq 5$ the graphs of $y=\cos 2 x$ and $y=\sin 3 x$ intersect four times. Let A, B, C, and D be the x-coordinates of these points so that $0<A<B<C<D<5$. Which of the definite integrals below represents the largest number?
a. $\int_{0}^{A}(\cos 2 x-\sin 3 x) d x$
b. $\int_{A}^{B}(\sin 3 x-\cos 2 x) d x$
c. $\int_{B}^{C}(\sin 3 x-\cos 2 x) d x$
d. $\int_{C}^{D}(\cos 2 x-\sin 3 x) d x$
e. $\int_{C}^{D}(\sin 3 x-\cos 2 x) d x$
35. Suppose that f is a continuous function defined for all real numbers x and $f(-5)=3$ and $f(-1)=-2$. If $f(x)=0$ for one and only one value of x, then which of the following could be x ?
a. -7
b. -2
c. 0
d. 1
e. 2
36. The graph to the right shows the distance $s(t)$ from a reference point of a particle moving on a number line, as a function of time. Which of the points marked is closest to the point where acceleration first becomes negative?
a. A
b. B
c. C
d. D
e. E
37. $\frac{d}{d x} \int_{x}^{x^{3}} \sin \left(t^{2}\right) d t=$
a. $\sin \left(x^{6}\right)-\sin \left(x^{2}\right)$
b. $6 x^{2} \sin \left(x^{3}\right)-2 \sin x$
c. $3 x^{2} \sin \left(x^{6}\right)-\sin \left(x^{2}\right)$
d. $6 x^{5} \sin \left(x^{6}\right)-2 \sin \left(x^{2}\right)$
e. $2 x^{3} \cos \left(x^{6}\right)-2 x \cos \left(x^{2}\right)$
38. Let $f(x)$ be a continuous function on the closed interval [1, 4]. If $5 \leq f(x) \leq 9$, then the least possible value for $\int_{1}^{4} f(x) d x$ is:
a. 15
b. 3
c. 4
d. 27
e. 31
39. The function $f(x)=\tan \left(3^{x}\right)$ has one zero in the interval [0, 1.4]. The derivative at this point is:
a. 0.411
b. 1.042
c. 3.451
d. 3.763
e. undefined
40. The region in the first quadrant enclosed by the graph $y=x$ and $y=2 \sin x$ is revolved around the x-axis. The volume of the resulting solid figure is:
a. 1.895
b. 2.126
c. 5.811
d. 6.678
e. 13.355
41. C
42. B
43. C
44. C
45. C
46. D
47. A
48. E
49. D
50. B
51. C
52. C
53. A
54. C
55. D
